
Perceptual hue, lightness, and chroma are represented in a 
multidimensional functional anatomical map in macaque V1

Ming Li1,2,3,*, Niansheng Ju1,2, Rundong Jiang1,2, Fang Liu1,2, Hongfei Jiang1,2, Stephen 
Macknik4, Susana Martinez-Conde4, Shiming Tang1,2,*

1Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 
100871, China

2IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China

3State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 
100875 Beijing, China

4State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 
Brooklyn, New York, 11203 USA

Abstract

Humans perceive millions of colors along three dimensions of color space: hue, lightness, and 

chroma. A major gap in knowledge is where the brain represents these specific dimensions in 

cortex, and how they relate to each other. Previous studies have shown that brain areas V4 

and the posterior inferotemporal cortex (PIT) are central to computing color dimensions. To 

determine the contribution of V1 to setting up these downstream processing mechanisms, we 

studied cortical color responses in macaques—who share color vision mechanisms with humans. 

We used two-photon calcium imaging at both meso- and micro-scales and found that hue and 

lightness are laid out in orthogonal directions on the cortical map, with chroma represented by the 

strength of neuronal responses, as previously shown in PIT. These findings suggest that the earliest 

cortical stages of vision determine the three primary dimensions of human color perception.
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1 Introduction

Trichromatic color vision in primates is advantageous to seeking food (Osorio and Vorobyev, 

1996) and during social interactions (Chang et al., 2017; Freiwald, 2020a, 2020b; Hasantash 

et al., 2019; Hiramatsu et al., 2017; Shepherd and Freiwald, 2018; Sliwa and Freiwald, 

2017). Different combinations of electromagnetic frequencies and intensities within the 

visible spectrum result in the colors we see, but colors are not seen as a linear function of 

wavelength and intensity. How the brain achieves the richness of color perception remains 
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a mystery. For more than one hundred years, artists and scientists have created various 

systems to describe the human perception of color. Most of them used dimensions of hue, 

lightness, and chroma, calling into question how human brains organize neural responses to 

produce these distinct dimensions of color perception.

The primary neural pathway of color signal processing is known (Conway, 2014; Shapley 

and Hawken, 2011). Three types of cone photoreceptors are differentially selective to 

overlapping bands of wavelength within the retina. Within the ascending retino-geniculo-

cortical pathway, interactions between cone signals take place in both the retina (Dacey, 

1996; Gouras, 1968) and in the lateral geniculate nucleus (LGN) (De Valois et al., 1966; 

Derrington et al., 1984). In V1, the subset of neurons that are selective to colors (Cottaris 

and De Valois, 1998; Lennie et al., 1990; Livingstone and Hubel, 1984, 1983; Thorell et al., 

1984; Wachtler et al., 2003) concentrate within cytochrome oxidase (CO) blobs, in which 

cells preferring similar colors are often located in clusters (Garg et al., 2019; Landisman and 

Ts’o, 2002; Ts’o and Gilbert, 1988). In V2, hue-selective columns form band-like patterns in 

relation to the perceptual color wheel (Xiao et al., 2003). Downstream, V4 and the posterior 

inferotemporal cortex (PIT) are thought to fully represent perceptual color dimensions 

(Bohon et al., 2016; Conway and Tsao, 2009; Li et al., 2014). In the inferotemporal cortex 

(IT), cells with sharp tuning for saturation are also found (Komatsu et al., 1992), but whether 

chroma is represented by a pattern in a cortical map is unknown. The representation of 

perceptual color space appears to have developed gradually along the ventral visual pathway 

(Liu et al., 2020).

Subcortical opponent color processes undergo a nonlinear transformation in V1 (Cottaris 

and De Valois, 1998; De Valois et al., 2000; Horwitz and Hass, 2012; Stockman and 

Brainard, 2010), which instantiates the initial organizing principles of the primary three 

dimensions of perceptual color space processing in the brain. Anatomical evidence indicates 

that V1 layers II/III receive all three kinds of cone information (Sincich and Horton, 2005), 

and intrinsic signal optical imaging (ISOI) has shown that different hues activate organized 

cortical representations in V1 (Xiao et al., 2007). This suggests that neural populations in 

this area process different colors with segregated circuits. V1 moreover encodes hue and 

lightness in parallel (Hass and Horwitz, 2013; Johnson et al., 2001; Lennie et al., 1990; 

Livingstone and Hubel, 1988; Peng and Van Essen, 2005; Yoshioka et al., 1996) meaning 

that there could be a map of how different hue and lightness combinations are processed, 

with some V1 cells responses varying as a function of increased saturation (Hanazawa et al., 

2000). In sum, previous studies indicate that V1 may contribute to the representation of all 

three perceptual dimensions of color. We thus initiated this project to determine V1’s precise 

contribution to the organizing principles underlying color perception.

Various color systems have been used to study V1 responses, but near-uniform perceptual 

color spaces are rarely employed. Color gratings are often displayed to activate cells, 

especially as there has been great interest in understanding the relationship between 

orientation and color. In addition, most physiological studies of V1 have focused on 

equiluminant hue responses. Some studies have constrained lightness levels without 

controlling chroma, which could reduce response efficacy as a function of hue (Bohon et al., 

2016). Notably, such methods are seldom used in human vision studies. Thus, to establish 
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a suitable correspondence between V1 responses in macaques and perceptual responses in 

human participants, we adopted a Munsell color space approach (Munsell, 1919), which is 

often employed in human color experiments.

Munsell color space consists of a central axis representing achromatic lightnesses between 

N0 to N10, with hue represented in the plane orthogonal to the lightness axis, and color 

chroma indicated with increasing distance from the central axis. Thus Munsell color space is 

geometrically cylindrical and it has the advantage of clearly defining and standardizing 

discrete points that can be used for human color perceptual testing. The orthogonal 

relationship between its color dimensions has moreover been verified as ecologically valid 

to human perception via multidimensional scaling (Indow and Kanazawa, 1960). Thus our 

use of Munsell color space allowed us to constrain the stimulus set of the current study to a 

defined and feasible range that nevertheless spanned the majority of human perceptual color 

space across all three dimensions. Although Munsell color space is not perfectly uniform 

perceptually, neither is any other color space. We overcame this drawback by also projecting 

color stimuli into various frequently used color spaces (such as CIELuv, CIE CAM2000). 

To further limit experimental complexity, we studied color space in isolation and did not 

examine its relationship to spatial response dynamics. Further studies will examine the 

important relationship between the color maps we have discovered and orientation maps.

Given the potentially small size of V1 color circuits, traditional techniques such as ISOI may 

not be precise enough to image the V1 representation of color space. Moreover, because 

many V1 cells are only partially tuned to color stimuli (Friedman et al., 2003), the low 

SNR of ISOI may prevent the reliable detection of all color-related responses. Though 

electrophysiological recordings may resolve some of these issues, they are themselves 

limited in that they do not provide the local sampling density or the spatial coverage 

necessary to map a large area of the cortex. Thorough mapping of multiple perceptual 

dimensions with electrophysiological approaches would also be time-consuming as it would 

require displaying an exceedingly large number of visual stimuli during the experiments. 

To overcome these difficulties, we used long-term two-photon imaging experiments in V1 

(Li et al., 2017a) of two awake rhesus macaques (Macaque mulatta) in conjunction with 

the ultrasensitive genetically encoded calcium indicator GCaMP6s (Chen et al., 2013). We 

systematically mapped color perception in meso and micro scales in a restricted color space, 

by presenting carefully chosen color stimuli selected along with the hue, lightness, and 

chroma dimensions of Munsell color space (Munsell, 1919). Our data revealed that these 

dimensions are precisely represented in V1, and that there is a link between two-dimensional 

cortical color representation and three-dimensional perceptual color space.

2 Materials and methods

2.01 Experimental Design

Rhesus monkeys (Macaca mulatta) were purchased from Beijing Prima Biotech and housed 

at Peking University Laboratory Animal Center. The study used three healthy adult male 

monkeys, 4 – 5 years of age and weighing 5 – 7 kg. All experimental protocols were 

approved by the Peking University Animal Care and Use Committee.
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The detailed procedures were described previously (Li et al., 2017a). Briefly, 

the animals were anesthetized, and a craniotomy was performed over V1 

under sterile surgical conditions. The dura was reflected, and AAV vectors 

(AAV1.hSynap.GCaMP6s.WPRE.SV40, Penn Vector Core) were injected at multiple sites 

of the cortex, about 150 nL at each site. Injection sites were spaced at intervals of about 

800 μm across the cortical surface. To avoid possible damage to the functional column 

structure, the injection pipette was inserted at an angle of 45 degrees to the surface. Within 

our 10 mm diameter imaging window, we completed 10 to 22 injections. The dura was then 

sutured, the bone flap replaced, and the skin was sutured. After 1–2 months, the animal 

was anesthetized again, the bone flap was removed under sterile conditions, and a durotomy 

was performed. A 2 cm-diameter round glass cover slip with a 1 cm-diameter titanium ring 

was positioned under the ~1 cm wide dura hole, with the titanium ring attached to the skull 

using dental cement, carefully applied to create a sealed imaging chamber that held the 

cover slip against the cortex. A large stainless-steel ring was attached with glue to the skull 

around the outside circumference of the craniotomy’s edge (which allowed us to attach a 

cap to protect the chamber between recordings). A custom three-point head stabilization 

halo was implemented to minimize motion of the skull during recordings. We mounted three 

head posts at roughly equidistant points around the circumference of the skull: two on the 

left and right temples respectively, and one on the back of the skull. These three points 

formed a plane, and during recordings, were connected to a heavy steel plate with T-shaped 

braces positioned under the microscope as part of the monkey chair assembly. Following the 

implantation surgery, the animals recovered in the vivarium for one or more months.

During imaging procedures, each monkey was seated in a primate chair under the 

microscope. Each monkey fixated on a small white spot (0.1°) within a window of 1° for 

over 2 s to obtain a juice reward. Eye positions were monitored with an infrared eye-tracking 

system (ISCAN) at 120 Hz.

Visual stimuli were generated using a ViSaGe system (Cambridge Research Systems, UK) 

and displayed on a 21-inch CRT monitor (SONY G520, refresh rate = 80 Hz, maximum 

luminance = 105 cd/m2). The CRT was positioned 51 cm away from the eyes of the animals 

and calibrated for precise color emission as described below. The V1 neuronal receptive 

field (RF) sizes and positions (ranging from 2.7° to 4.8° of eccentricity within the monkeys’ 

visual fields) were estimated using manual mapping with black and white dots.

2.02 Visual Stimuli

We employed a set of 93 different visual stimuli to determine the stimulus preference of 

each cell (Fig 1E). Orientation and color preference was determined with drifting Gabors 

(SF = 3 cycles/degree, speed = 2.67 cycles/second, σ = 0.25°, and contrast = 100%) or static 

color disks (1° in diameter), respectively. Each Gabor or disk stimulus was presented for one 

second following a one-second blank interval, once fixation was voluntarily initiated by the 

monkey. All stimuli were shown against a background of either homogenous gray (Munsell 

color N5) or a mosaic of randomly chosen achromatic dots with Munsell colors N0 to N10. 

Randomly chosen backgrounds were re-randomized for each presentation and balanced to 
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equal an average luminance of N5. Ocular dominance (OD) was determined by alternately 

presenting achromatic gratings to each individual eye.

2.03 Calibration of CRT chromaticity in CIE coordinates

We used an automated closed-loop system to establish the proper RGB values for a given 

CIE coordinate’s chromaticity with our video stimulation system’s CRT. Each specified 

stimulation color from our set of 93 stimuli was assigned target coordinates for the 

calibration function xt yt Y t . We then presented a one-degree patch of the stimulus on 

the CRT with an initial arbitrary RGB test value and measured the video output with a 

SpectroCAL spectroradiometer (Cambridge Research Systems, UK). We corrected the error 

between the measured and desired CIExyY coordinates by adjusting the RGB values to 

reduce the error function (e), followed by a retest, using this formula:

e =
xc − xt

xt

2
+

yc − yt
yt

2
+

Yc − Yt
Y t

2

Let xc, yc, and Yc be the measured CIExyY coordinates. This search algorithm repeated until 

the error was optimized to a level below 1% (e > 0.01), within the CRT’s RGB color space 

of R ± 1,  G ± 1,  B ± 1 . Once e ≤ 0.01 for each color and achromatic stimulus in our set, the 

RGB values were stored for use in our experiment.

2.04 Munsell color space parameters

To calibrate our chromatic stimuli to specific points within Munsell color space, we obtained 

the CIE_1931 xyY coordinates for each Munsell color from the Munsell Color Science 

Laboratory of Rochester Institute of Technology (RIT, https://www.rit.edu/cos/colorscience/

rc_munsell_renotation.php). To test the lightness response of various hues while holding 

chroma stable, we chose Chroma level 6. This was based on our preliminary data showing 

that peak SNR in neuronal calcium signal responses occurred when chroma levels were 

significantly below ceiling (Fig. 3F). This choice allowed us to achieve the most linear 

possible neural responses as a function of lightness across the entire stimulus set without 

saturating.

We note that Chroma 6 of some stimuli could not be produced by our CRT (due to its 

limited gamut), for a subset of lightness levels. This typically occurred at the extremes of the 

Munsell Value range (i.e., one and/or nine, see Fig. 1A). To estimate Chroma at the extreme 

ranges of our CRT, we fit splines to both the x and y coordinates listed within the RIT 

Munsell Color table and interpolated the intermediate chroma levels from the coordinate 

curves at a resolution of 0.1. We then employed the maximum chroma level achievable using 

our closed-loop color calibration system (above) during the experiments (see Tables 1 and 

2).

2.05 Calculation of stimulus color coordinates and DeltaE in other color spaces

To calculate DKL coordinates for our color stimuli, we measured the spectrum of our 

CRT (SCRT) using the same spectroradiometer used to calibrate the CRT’s chromaticity. 
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Color matching functions (CMFs) (Stockman & Sharpe cone fundamentals 2000, 10 

degrees) (Stockman and Sharpe, 2000) were obtained from Color and Vision Research 

Labs (http://www.cvrl.org). The transformation from RGB to LMS was defined as 

LMS = CMFs’ *   SCRT * RGB’. These LMS coordinates were transformed into DKL 

coordinates by lms2dkl function in the toolbox of “Computational Color Science using 

MATLAB” (Peng and Van Essen, 2005). We converted each stimulus’s CIExyY coordinates 

into CIEXYZ coordinates, and to other color spaces, using the “Computational Color 

Science using Matlab” toolbox. In DKL and Munsell color spaces we defined DeltaE as 

the Euclidean distance between colors. When using other color spaces, we defined DeltaE 

following their specific conventions.

2.06 Two-photon imaging

Two-photon imaging was performed using a Prairie Ultima IV (In Vivo) microscope (Bruker 

Nano, GmbH, formerly Prairie Technologies) driven by a Ti: Sapphire laser (Mai Tai 

eHP, Newport Spectra-Physics Ltd). The wavelength of the laser was set to 1000 nm. The 

objective lens was either 16X (N.A. = 0.8, Nikon), 25X (N.A. = 1.05) or 4X (N.A. = 0.2, 

Nikon). Laser scanning employed a combination of galvanometers (galvos) and resonance 

frequency scanners (resonant) to sweep the laser across x and y positions within each z-axis 

depth to create an image at each depth. To obtain static images with high resolution (1024 

× 1024), we used galvos for both x and y positioning, which resulted in slow scans (~1 

sec / frame). We used fast resonant-galvo scanners (up to 31.5 frames per second) to obtain 

calcium response time-series (resolution 512 × 512) of neuronal activities (typically, 8 fps 

while employing online averaging of every four scanned frames). We did not observe any 

cortical damage in long-term recordings using the 4X objective with 90 mW laser power on 

the cortex.

Due to the difference in signal-to-noise (SNR) for each of the three different objectives, the 

number of trials used to sample functional responses varied by objective type (N = 10–11 for 

16x or 25x objective data, N = 50 for 4x data).

2.07 Overall image analysis paradigm

To establish the functional anatomy of color processing in V1 from microscopic data 

acquired at varying resolutions, we analyzed the data at multiple spatial and temporal 

scales, as described in the following sections. In summary, we first pre-processed the raw 

image files to determine the image pixels that we later analyzed for functional activity. 

We grouped those pixels in three ways. First, we determined meaningful cellular shapes 

for the identification and screening of individual cells (cellular maps)—this allowed us 

to analyze individual cell response time courses for some of the analyses. Second, to 

create functional anatomical maps of stimulus selectivity we binned raw pixels 2 × 2 and 

determined fluorescence responsivity to visual stimuli (i.e., ΔF/F maps). We used these 

pixel-by-pixel response time-series to analyze both raw calcium responses and to create 

functional maps of perceptual selectivity such as hue and orientation. Third, we established 

the statistical significance of newly discovered functional maps relevant to color perception 

(such as hue and lightness) by analyzing clusters of significantly responsive pixels. We 

conducted several further statistical analyses to better understand the data in a variety of 
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ways, such as classical multidimensional analysis and other tests of statistical significance of 

the results, as described below.

2.08 Image data pre-processing

We analyzed data using customized MATLAB code (The MathWorks, Natick, MA). We 

continuously recorded from an imaging plane during a calcium recording session, producing 

a time series (TS) of images that could be related to the synchronized stimulus presentation. 

To address motion artifacts during long recordings, we analyzed the first 5000 images 

of each TS and averaged the 10% most correlated images to create a template image. 

The remaining images were then motion-corrected using this template by normalizing 

with a cross-correlation-based translation algorithm (Li et al., 2017b). Eight averaged 

frames (about 1 second in recording duration) before and after each stimulus onset were 

averaged to form the F0 and F1 frames of a stimulus response, respectively. Cellular and 

response extraction for all subsequent analyses followed from a primary initial procedure: 

we spatially binned pixels 2 × 2 to enhance SNR by reducing noise (examples in Fig. 1H and 

I).

2.09 Signal to noise ratio

Signal to noise ratio was defined by SNR =
μmax − μmin

SEmax + SEmin
, where μmax and μmin were the 

mean responses to the best and worst stimuli. SEmax and SEmin were the corresponding 

standard errors (Nauhaus et al., 2012). SNR was computed pixel-by-pixel to get a raw SNR 

map. This raw SNR map was smoothed (Gaussian filters, σ = 35 μm) to cover or exclude 

regions with SNR < 3 (Fig. 5B and C). This was applied to calculate the functional maps 

described in the “Functional mapping analyses” section below.

2.10 Functional mapping analyses

We conducted three different types of basic pixel-by-pixel analyses to study the responsivity 

of our TS to our 93 individual stimuli. First, we calculated the pixel-by-pixel SNR of 

these responses (see above). Second, we calculated the average calcium responses over 

multiple trials and used them to produce ΔF/F maps (examples in Fig. 1F and 1G), where 

ΔF /F  =
∑fi = 1

n  (F1fi − F0fi)

∑fi = 1
n F0fi

 and n (n ≥ 1) was the number of stimulus conditions. Finally, 

the statistical significance of the map was determined with a Student’s t-test comparing the 

F1 and F0 means for each pixel’s response to each stimulus (described in more detail in 

the “Identification of clustered patterns with connected component labelling” section below). 

The average ΔF/F maps for orientations versus hues were computed and normalized. Peaks 

on these maps were thresholded (0.75), and pixels within the union of the peak regions were 

compared by Pearson correlation (Fig. S1E).

2.11 Cell extraction and screening

A temporal response analysis was created for each cell (rather than for each pixel in each 

image), by identifying the individual cells in each image and deriving a time-course of their 

responses as a function of visual stimulation. Responsive cells for each stimulus condition 
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were identified as round regions of interest (ROIs) that exhibited calcium responses, using 

the ΔF/F maps described above. We set the radius (r) of each ROI manually (r = 5.5 μm; 

for 16x, r = 3.5 pixels; for 25x, r = 5.5 pixels). We convolved the ΔF/F maps with a 

difference-of-gaussians (DOG) filter (σ1 = 0.25 * r, σ2 = r) and binarized the results using 

the triangle threshold method (Zack et al., 1977). We defined the ROIs from these binary 

maps as responsive cells. ROIs which were too large (area > π * (2r)2) or too small (area < 
π* (r / 2)2) or not round (with round index 4 * π * area / perimeter2 < 0.5) were discarded. 

We applied a mask defined by these ROIs to the raw image frames to obtain the fluorescence 

responses to each stimulus and determined the aggregate average ROI response by averaging 

the ROI’s pixels. The ratio of fluorescence changes (cellular ΔF/F) was thus defined as the 

response to a stimulus. We identified visually responsive cells by discarding cells that did 

not exhibit significant response selectivity for any of the 93 visual stimuli that we presented 

(tested with a one-way ANOVA, p > 0.01). We subsequently identified color-responsive cells 

(hue, lightness, and chroma responsivity) using the same ANOVA test, by restricting the test 

to the responses from the specific chromatic stimuli.

2.12 Pixel map creation

We created various pixel-based maps (rather than cell-based maps) of functional preference 

from the 2 × 2 binned ΔF/F maps, in which every pixel in the image was assigned a 

preference. These maps were created by examining the functional responses to different 

subsets of our 93 stimuli set (hue, lightness, orientation, and chroma), to produce 4 different 

functional preference maps. Note that chroma did not produce a spatial map and was 

revealed to be represented by the magnitude of the functional response (see analysis below). 

To create pixel maps from the ΔF/F maps, we determined the response of each pixel to the 

appropriate stimuli for each functional type. The stimulus which activated a given pixel most 

powerfully was assigned as the pixel’s preferred stimulus for each functional map’s stimulus 

dimensions. That is, each individual pixel, within each of the four different pixel maps, was 

assigned a preference for hue, orientation, lightness, and chroma. These pixel maps were 

later used as the basis of statistical analyses to extract the presence of pinwheels, linear 

zones of response, etc. (see below).

After we obtained the pixel maps of hue or orientation (Figs. 2A, 2B, S2A and S2B) 

we computed the gradient of hue or orientation angles at each pixel. To address potential 

gradient discontinuities at the edges of the angle maps (for example, when π meet – π), 

we created a copy of the angle map and converted the values between [-π 0] to [π 3π] and 

recomputed the gradients near the discontinuous edges. Within pinwheels the gradients are 

similar to the velocity fields of a vortex. Following from Graftieaux (2001), we computed 

the vortex index of each pixel of the angle gradient map using an ROI of 19×19 pixels: For 

each pixel within an ROI, a radial vector map was created by using vectors from the center 

of the ROI to each pixel. At each pixel position, we then computed the sine of the angle 

between the gradient and the radial vectors. The mean value of the sine values within an ROI 

constituted its vortex index. The absolute value of the vortex index of each pixel on the angle 

map formed a vortex index map. Within pinwheel positions we found the vortex index to be 

quite close to 1. A threshold of mean + 5*SD was used to isolate the pinwheel positions.
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2.13 Identification of clustered patterns with connected component labelling

We identified significant pixels by comparing the F0 and F1 responses from 2 × 2 binned 

pixels with one-tailed Student’s t-test (p < 0.01, though sometimes when the significant 

pixels were densely packed, we employed a significance threshold of p < 0.001 or 0.0001).

We grouped visually responsive pixels into clusters using the OPTICS algorithm (Python 

package scikit-learn 0.24.2). We generally employed the default parameters in OPTICS, 

except for min_samples and min_cluster_size. These parameters were estimated in the 

following way. First, contiguous pixels within the significant pixel map were identified as 

objects using the MATLAB bwconncomp function. Identified objects were then sorted in 

descending order by the number of pixels in each object. The threshold was then identified 

by determining the “elbow” in the size frequency distribution, using a triangle threshold 

algorithm (Zack et al., 1977). This “elbow” in the frequency distribution was assigned as 

the OPTICS variable: min_samples, and thus smaller objects were filtered out. We defined 

the OPTICS clustering variable min_cluster_size empirically as min_cluster_size = 10 x 

min_samples +100.

We assigned convex hulls to each of the clusters to identify them as visually responsive 

regions of cortical activity for subsequent analyses of chromatic and orientation tuning 

(examples in Fig. 1H). The centroid (center-of-gravity) of each contour was defined as 

the position of the average response-weighted pixel within each contour. We refer to these 

stimulus-tuned contours as patches for subsequent analysis.

2.14 Grouping of hue, lightness, chroma, or achromatic patches

To analyze the spatial relationships on the cortex between stimulus-tuned patches identified 

in the previous section, we grouped patches as a function of their density as defined by 

the OPTICS algorithm. We grouped using four dimensions: hue, lightness, chroma and 

achromaticity.

Because noise was rejected at the cluster level (see previous section), we did not 

have a noise-rejection stage, and thus min_samples was set to the minimum value (2); 

min_cluster_size was set to round(Nstim * 80%). On the rare occasion that more than one 

patch centroid within a group had the same stimulus preference, we discarded the redundant 

patch (Figs. S2E and S3). We omitted redundant patches by identifying those that were far 

from the rest of the group.

2.15 Cortical distances between centroids of patches

The distance between similarly and differently tuned functional patches is a critical analysis 

in understanding the underlying circuits in cortex. To compute cortical distances between 

hues, lightnesses, and levels of chroma, we calculated the pairwise Euclidean distance 

between all centroids within each group. We then pooled these pairwise distances across 

groups to determine the median distances and variability (Figs. 2G, 3E, and 4F).

Li et al. Page 9

Prog Neurobiol. Author manuscript; available in PMC 2022 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.16 Classical multidimensional scaling (cMDS) of cortical distance

The pairwise patch distance information lends itself to similarity analyses using cMDS; we 

used the Matlab function cmdscale. We calculated cMDS coordinates between patches of 

a single stimulus dimension using the median distances between patches of that stimulus 

type. To assess the spatial structure of patches of two or more stimulus dimensions on the 

surface of V1, we compared the median distances between all pairwise patches from various 

combinations.

The stress factor in the cMDS analysis is computed as stress =  
∑ dij − dij

2

∑dij2 , where dij is 

the distance in the original matrix. dij thus represents the distance in the MDS constructed 

space. We adopted the first two or three dimensions to compute the dij in this analysis.

2.17 Multidimensional scaling (MDS) of stimulus dissimilarity in neuronal space

Because each visually responsive neuron could potentially have a complex response profile 

to the various color stimuli we presented, we considered each neuron as a dimension in 

our analysis, with the number of dimensions of the resultant multidimensional space being 

the number of neurons recorded. A given stimulus typically activated many neurons with 

different strengths, and the population response profile of each stimulus was assigned as a 

coordinate within this multidimensional neuronal space. To compute the similarity between 

each of our 81 color stimuli in a pairwise fashion, we calculated the correlation between 

responses from all the neurons for each stimulus pair. We obtained the MDS of color 

responses by first building an 81 × 81 similarity correlation matrix (Ms) using the coordinate 

responses to the subset of 81 color stimuli. Finally, the dissimilarity matrix was defined as 

1–Ms for the MDS calculation using the Matlab mdscale function, employing ‘sammon’ 
criterion. The stress of MDS was obtained directly from the output of this mdscale function.

Shepard plots further visualized the goodness of the MDS within specific dimensions by 

indicating how well the distance in the MDS space reflected 1-Ms (Fig. S6).

2.18 Hue-lightness contour maps and their orthogonality

We derived two separate pixel maps from the hue-lightness preference map (Figs. 5A and 

S5A), one for hue and one for lightness. These pixel maps were smoothed by gaussian low 

pass filters (sigma = 35 μm) and hue and lightness were then discretized into 5 and 11 

levels respectively and plotted as contours (isoheight lines) onto a single map (Figs. 5C and 

S5C). Points of crossing between the hue and lightness contours established the degree of 

orthogonality between lightness and hue maps. We calculated the separate gradients along 

the hue and lightness dimensions at the crossing-points, and the difference in the direction of 

each crossing gradient was calculated and plotted as a histogram in Fig. 5D.

To evaluate the significance of the peaks on the histogram, we permutated the stimuli tags 

randomly and repeated the above analyses with 1000 iterations. The maximum value on the 

left versus right halves of the histograms were then used to test the significance level of the 

difference between peaks.
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2.19 Multiple linear regression analysis of cellular color responses

To quantify whether V1 cells are described better by Munsell versus DKL color space, we fit 

cellular responses to color stimuli with multiple linear regressions derived by the coordinates 

of the color stimuli within each color space (Fig. 7A and Fig. S7). In Munsell color space, x 

and y coordinates of a stimulus was defined by x = Chroma * cos( Anglehue ), y = Chroma * 

sin( Anglehue ), z = Munsell Value, whereas in DKL color space, x = L - M, y = S - (L + M), 

z = L + M. We also fit a reduced multiple linear regression model using solely equiluminant 

colors (all the color stimuli with Munsell Value = 5), where only x and y coordinates were 

considered.

To determine any spatial differences between Munsell vs DKL preferring cells, we first 

identified cells that were more selective to Munsell color space than to DKL color space 

(R2
Munsell > R2

DKL and R2
Munsell > 0.5; left panels of Fig. 7B). We compared these to 

the general color-selective or orientation-selective local calcium response patches—LoCa 

patches (see Section 3.1 for details on how LoCa patches are determined). Munsell-encoding 

cells were largely confined to color selective LoCa patches of cortex. We then identified 

those cells that exhibited preference for DKL color space over Munsell space (R2
DKL > 

R2
Munsell and R2

DKL > 0.5; left panels of Fig. 7C) and compared them with color-selective 

or orientation-selective LoCa patches. DKL-encoding neurons were found largely within the 

regions where color- and orientation-selective LoCa patches overlap.

To quantify these findings, we converted the pixel values to z-scores for a large cortical area 

of LoCa maps representing color or orientation fields. Then z-score values at the positions 

of specific subpopulation of cells were collected and shown as histogram (Fig. 7D–E). At 

last, z-scores collected from the color field maps were compared with those collected from 

the orientation field maps, mean values of these z-scores collected from different maps were 

tested by Student’s t-test.

2.20 Statistical Analysis

We employed the Student’s t-test to determine significant responses in pixels by comparing 

fluorescent intensity before and after stimulus onset. We compared medians with a Wilcoxon 

rank-sum test. We quantified correlations using Pearson’s correlation, and compared the 

correlation coefficients using Williams’ t-test (Williams, 1959). We corrected multiple 

testing using Bonferroni correction.

3 Results

3.1 Visual stimuli and recording procedures

Due to the vast size of Munsell color space, and because we needed to run multiple trials 

of each stimulus to achieve sufficient SNR in our responses, we could not test every 

combination of hue, chroma, and lightness. Instead, we reduced the number of stimuli to 

cover all three dimensions (Fig. 1A) and we focused our studies on: 1) 11 achromatic 

lightness levels along the central axis of Munsell color space (N0 to N10); 2) five hues that 

are roughly evenly spaced around the color wheel of perception (Munsell 5R, 5Y, 5G, 5B, 

and 5P) as a function of four to seven chroma levels (in which lightness was held constant at 
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level 5); and 3) the same five Munsell hues as a function of nine lightness levels (in which 

chroma was held constant at level 6). The implementation of iso-chroma levels is an advance 

over previous color recordings in V1 (Garg et al., 2019; Xiao et al., 2007). In addition, we 

presented achromatic drifting gratings in six different orientations and two directions (Fig. 

1B) to assess orientation selectivity. There were thus 12 oriented gratings + 11 achromatic 

Munsell stimuli + 25 Hue/Chroma Munsell stimuli + 45 Hue/Level Munsell stimuli = 93 

stimuli in total.

Our imaging methods follow our previous studies (Ju et al., 2020, 2018; Li et al., 2017a; 

Liu et al., 2020). Fluorescence responses to stimuli were defined as (F1-F0)/F0—ΔF/F—

where F0 and F1 were fluorescence signals averaged over a period of one second before 

versus after stimulus onset, respectively. The presentation of one stimulus constituted a 

trial, and each of 93 stimuli was presented 10–11 times at each cortical imaging location. 

We used a 16X or 25X objective lens, and after motion correction (Li et al., 2017a), the 

images were stable within a given recording session (Fig. S1). Over the course of the entire 

experiment, we recorded approximately 1000 successful trials for a single imaging plane on 

each cortical location. Individual cells varied in their preferences within different dimensions 

of our stimulus set (Fig. 1E). We identified color-tuned patches (Fig. 1F, averaging of 5 

hues) by the ΔF/F Ca responses from cellular neuropil and somas—we refer to these maps 

as “local cortical calcium responses” (LoCa maps). The cortical surface area of the LoCa 

patches ranged from tens to hundreds of square millimeters. By comparing F1 with F0 pixel-

by-pixel across 10–11 repeat trials for each stimulus (Fig. 1G, one-tailed paired-sample 

t-test, p<0.01), we identified significantly activated pixels and clustered them into patches 

using the OPTICS algorithm (Ankerst et al., 1999). We created convex hulls around these 

identified clusters to indicate specific LoCa patches, following the analyses described in the 

Materials and Methods. Different hue stimuli activated patches located at different positions 

of the cortex (Fig. 1H and 1I).

3.2 Pinwheels and linear zones of hue-selectivity in V1

Using a 4X objective lens (3.2 mm x 3.2 mm field of view), we recorded robust mesoscale 

calcium signals and obtained high-resolution ocular dominance (OD) maps (white lines 

in Fig. 2A). We obtained both color and orientation pixel maps (Figs. 2 and S2, see 

Materials and Methods) by mapping responses to either the five Munsell hues (Value = 5, 

Chroma = 6) or the orientated gratings. Although there was overlap, the peak color-selective 

regions were negatively correlated to the peak orientation-selective regions (r ≤ −0.55 across 

both monkeys, Fig. S1E). This corroborates previous studies showing that color-sensitive 

cortical regions are segregated from orientation-selective regions in V1 (Garg et al., 2019; 

Livingstone and Hubel, 1988). We tended to find that hue-selective patches, rather than 

being isolated, were grouped with patches selective to many other hues. Groups of hue-

selective patches formed either pinwheel-like patterns (for example, Fig. 2A site 1) or linear 

zones (for example, Fig. 2A site 2). Both in hue pinwheels and linear-zones, hues were 

typically arranged in spectral order, with patches selective to a given color generally abutting 

patches selective to cooler chromatic hues on one side and to warmer hues on the other. The 

centers of the pinwheels were identified with a vortex detection algorithm ((Graftieaux et 

al., 2001), see Materials and Methods). Just as peak hue-selectivity was anti-correlated with 
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peak orientation-selectivity, hue-pinwheel centers did not overlap with orientation-pinwheel 

centers (Figs. 2C and S2C).

Our analyses included three different mapping procedures, each of which with a different 

set of advantages. First, pixel maps are highly informative about patterns of activity across 

the surface of the cortex, but they have relatively low SNR and are potentially susceptible to 

image processing artifacts (i.e., pinwheels can be found in noise). Second, whereas cellular 

maps represent the ground truth of neuronal response selectivities in two-photon imaging, 

the number of cells in a imaging plane is sparse, making cellular maps relatively poor for 

the study of patterns of activity across large circuits. Third, LoCa maps (contour maps) 

have the advantage of identifying regions of similar activity across the cortical surface 

for large pattern analyses, but they are not informative as to the specific source of the 

signals. To ensure the validity of our pixel and contour maps, we compared them to the 

cellular responses from a volume having 7 imaging planes. We found that, irrespective of 

the analysis approach, hue maps did not differ (Fig. 2D–F). This verified that our novel 

pixel and contour mapping methods faithfully represent neuronal selectivities made with 

traditional cellular mapping techniques.

Pinwheel-like structures were consistent with perceptual color-wheels. We also noticed that 

patches at the terminals of the linear zones were not selective to random hues. Instead, 

the internal structure of the linear zones otherwise obeyed perceptual relationships. To 

test the overall relationship of these hue representation structures, we grouped the patches 

by OPTICS clustering (Fig. S2D and S2E) and analyzed the distance between patches of 

different hues (see Materials and Methods). For monkey A, the median distance was 69.39 ± 

4.99 μm (n = 126, median ± 1.57 * IQR / sqrt(n)) between adjacent hues and 106.45 ± 7.82 

μm (n = 124, median ± 1.57 * IQR / sqrt(n)) for non-adjacent hues. For monkey B, those 

distances were 41.31 ± 6.43 μm (n=130) and 79.62 ± 7.8 μm (n = 130), respectively. In both 

monkeys, the distances between non-adjacent hues were significantly larger than between 

adjacent hues (one-tailed Wilcoxon rank-sum test, p < 0.05).

We used classical multidimensional scaling (cMDS) to reconstruct the positions of 5 hues 

according to their distance (Fig 2H, see Materials and Methods). Stress at dimension 2 

was 0.06 and 0.13 for monkeys A and B respectively, meaning that the distances between 

patches within the first two dimensions of cMDS were highly coincident with the physical 

cortical distances between patches. Because cMDS optimizes the geometry of a specified 

set of related distance vectors, this outcome suggests that V1 optimally represents the 

perceptual similarity of hues in its cortical map. Specifically, the reconstructions showed that 

the 5 hues tested were distributed in rough accordance to their perceptual relationship to 

each other. That is, whereas the outcome might have been any order combination of the 5 

hues, we found that the relationship generally followed spectral order, which may explain 

why perceptual relationships follow spectral (physical) wavelength order. To quantify this 

relationship we computed the linear correlation coefficient between the median cortical 

distances of the 5 hues and their perceptual DeltaE in various color spaces (Fig. 2I). In both 

monkeys, the distances were highly correlated with the near-uniform perceptual color spaces 

we tested, including Munsell, CIELUV, CIELAB, and CIE2000. The correlation was also 

significant with CIExyY color space in monkey B, but not in monkey A, perhaps due to 
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the limited number of hues we used in our stimulus set, or because of the poor perceptual 

uniformity of CIExyY color space. The correlation was not significant for DKL color space, 

suggesting that whereas the retina may organize color along dimensions of cone sensitivities 

(central to the organization of DKL color space), V1 cortical circuits may not.

Together, our combined results indicate that primate hue perception is consistent with V1 

hue representations as a function of cortical distance.

3.3 The map of Munsell lightness in V1

Lightness is a primary dimension in color space. The background lightness adaptation state 

significantly affects the neural response to various relative luminance levels (relative to 

lightness) (Peng and Van Essen, 2005). We investigated the effect of local versus average 

background contrast by using two different background configurations: a homogeneous gray 

field (Munsell color N5) versus a mosaic background composed of small achromatic squares 

(0.13° x 0.13°) having randomly varied lightness levels (Munsell colors N0 to N10), with 

an average lightness equivalent Munsell color N5. The background configuration had a 

significant effect on the distribution of achromatic patches on the cortical surface (Fig. 3 

A–C). With the gray background, the stimuli that were lighter than the background produced 

cortical patches gathered into a bright grouping, whereas the stimuli that were darker than 

the background produced cortical patches gathered into a separate dark grouping (upper row 

of Fig. 3A and C, Fig. S3A). These groupings are reminiscent of the ON and OFF columns 

previously reported in cat and monkey V1 with electrophysiological (Kremkow et al., 

2016) and two-photon imaging (Lee et al., 2016) methods. Under the mosaic background, 

achromatic lightness was represented by a systematic and graded displacement of cortical 

patches (lower row of Fig. 3A and C, Fig. S3B), forming linear zones of achromatic 

lightness. This suggests that local and average background contrasts have different effects on 

achromatic color processing.

Local versus average background contrast stimuli did not, however, have different effects 

on cortical representations of chromatic lightness. We moreover did not observe a pattern 

such as ON and OFF columns arise to represent chromatic lightness while using either 

homogenous or mosaic backgrounds (Fig. S3C). Instead, we found that patches representing 

different chromatic lightnesses formed linear zones irrespective of the background (Figs. 

3D and S3D). These color lightness representations were consistent with the cellular and 

pixel maps we found through different analysis methods (Fig. 3E and S3E). To establish the 

relationship between these cortical locations quantitatively, we pooled together the cortical 

pairwise displacements found for each patch (see Materials and Methods). We found that as 

the lightness level decreased, the activated patches moved gradually from white patches to 

dark patches (Fig. 3F). For a specific group of lightness patches, the linear zones of lightness 

were rooted either between the achromatic white and black preferring regions of cortex or 

with at least one white/black region at one end of the chromatic lightness patch grouping.

To quantify the relationship of lightness-tuned regions of the cortex to perception, we 

computed the correlation coefficient between cortical distances of lightness patches and 

DeltaE in various color spaces (see Materials and Methods). The correlations with near-

uniform perceptual color spaces, including Munsell, CIELUV CIELAB, and CAM2000, 
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were significantly larger than with DKL and CIExyY color spaces (Fig. 3G). This suggests 

that the representation of lightness across the surface of the cortex is mapped consistently 

with perception.

We also note that the lightness linear zones aligned well across pixel maps, LoCa maps, and 

cellular maps (Fig. 3E). This finding shows that the lightness results are robust to the mode 

of analysis (Fig. S3F).

Macroscopic chromatically-tuned lightness representations have not been reported 

previously, to the best of our knowledge. To establish reproducibility, we compared the 

pixel maps created from data acquired in different experimental sessions across many days. 

The maps remained stable even when the recordings were obtained weeks apart (Fig. S3G).

3.4 Chroma is represented by the strength of the neural response

We tested whether chroma levels were represented by tuned patches at different cortical 

locations. We analyzed responses to chroma stimuli while holding the background lightness 

stable (homogenous gray backgrounds in monkey A and mosaic backgrounds of the same 

average lightness in monkey B). However, we did not find a significant number of chroma-

tuned cells or hue patches that systematically varied in cortical location as a function of 

chroma. Instead, the signal strength of the neuronal response increased as chroma level 

increased (Fig. 4A–C). Most cells moreover preferred the saturated chroma levels (Fig. 4B). 

Only 1.97% of the cells (19/966, two-tailed Student’s t-test, p < 0.05) preferred submaximal 

chroma levels. Therefore, few cells were selective for unsaturated colors in layers II/III of 

V1, consistent with previous findings (Hanazawa et al., 2000).

We analyzed hue patches more extensively to determine if there was an internal cortical 

microstructure within patches that mapped chroma at a level not identified with our previous 

analyses. We found that varying chroma levels did not alter the center of gravity of hue 

patches and did not result in subclusters of chroma-tuned responses positioned at different 

cortical locations (Fig. 4D). The cortical locations of hue patches were stable across chroma 

levels larger than 6 (Fig. 4E). Any displacements found with low chroma levels were 

accounted for by decreased signal-to-noise, which inevitably reduced the size of contours, 

thus affecting the precision of the patch locations (Fig. 4C).

To determine the relationship between chroma signal strength and perception, we compared 

the LoCa response strength (Fig. 4F) to the distance (DeltaE) in various color spaces (see 

Materials and Methods) and found them to be positively correlated (Fig. 4G). In addition, 

signal strength was more highly correlated to DeltaE of human perception-based color 

spaces than to the antagonistic-mechanism-based DKL color space (Fig. 4G).

These analyses indicate that the perception of chroma is represented in V1 layers II/III by 

neural response magnitude rather than by cortical location.

3.5 Cortical Representations of Hue and Lightness are Orthogonal to Each Other

To investigate how hue and lightness maps interact spatially across V1’s cortical surface, we 

generated mesoscale pixel maps of hue and lightness preference (Figs. 5A and S5A). After 
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applying a low-pass Gaussian filter (σ = 35 μm) and using iso-contours to view the data, the 

orthogonality of the hue versus lightness interactions were evident (Figs 5B–C and S5B–C). 

We quantified their spatial relationship as the angle difference at each hue/lightness contour 

crossing point on the map (see Materials and Methods). This procedure revealed clear peaks 

at about +/−90 degrees (Fig. 5D).

We also assessed the orthogonality of the hue and lightness maps using cMDS. We created 

the cMDS space using the lightness patches, including both chromatic and achromatic 

lightness patches (excluding achromatic N5) and removed noise by excluding outlying 

patches in the lightness dimension identified by the OPTICS algorithm (see Materials and 

Methods). We created a distance matrix by finding the distances between the centers of 

gravity of these patches (see Materials and Methods). We further analyzed the first three 

cMDS dimensions (stress = 0.03 in monkey A, 0.02 in monkey B at the third dimension) 

to determine the orthogonality of the hue versus lightness axes (Fig. 6A). Shepard plots 

revealed that the first three dimensions of cMDS space corresponded well to the patch 

distances found on the cortical surface (Fig. S6A). We fit lines along the lightness axis 

for each individual hue (including the achromatic lightness axis). We fit a plane to the 

line-centers of these lightness axes, defining the hue plane. We determined the angles 

between each lightness line to the normal vector of the hue plane: 0.75 ± 10.32 and 8.95 ± 

11.65 degrees (mean ± SEM, n = 12) in the two monkeys, respectively. The lightness axes 

were very close to the normal vector, indicating that the hue and lightness dimensions are 

orthogonal in high-dimensional space.

A non-classical MDS analysis also revealed orthogonality between the hue and lightness 

dimensions of color representation on V1. Here, we embedded the response dissimilarity 

between cells—as a function of all color stimuli tested—into the first three MDS dimensions 

and found the relationship between hue and lightness to form a spherical surface (Bohon et 

al., 2016). Hues distributed themselves along the equator of the sphere, whereas lightness 

was distributed along the meridians, indicating orthogonality (Fig. 6B, see Materials and 

Methods, Shepard plot on Fig. S6B). Previous studies revealed similar results in area PIT 

(Bohon et al., 2016).

We conclude from all the above analyses that the V1 representations of hue and lightness 

are orthogonal to each other, similarly to the V1 representations of orientation and spatial 

frequency (Nauhaus et al., 2012).

3.6 The overall representation of perceptual color space in V1

We next determined whether the cortical representation of hue and lightness reflected the 

perceptual relationships of color vision. To do this, we computed the correlation between 

the cortical distances of hue and lightness patches versus perceptual DeltaEs in various color 

spaces. The correlation coefficients were significant (Fig. 6C). Further, the coefficients of 

near-uniform color spaces were significantly higher than DKL or CIExyY color spaces (Fig. 

6D), indicating that V1 represents color perception much better than previously thought 

(Conway, 2014).
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The dissimilarities-based MDS space created by our dissimilarity analyses of the hue, 

lightness, and achromatic lightness dimensions, also parallels the MDS space found 

previously in the PIT cortex (Bohon et al., 2016). This further suggests that the hue and 

lightness dimensions of color perception are already well represented in V1. We note that 

our results have a more apparent hue-lightness structure than the previous PIT results, 

perhaps due to our chosen stimulus set or to the increased cell numbers in our study.

In our dissimilarities-based MDS space analyses, we found that chroma did not change 

the position of points within the first three dimensions, indicating that chroma varies the 

response intensity, but not the position, within higher-dimensional space (Fig 3).

The comparison of the distance versus dissimilarity MDS analyses (Fig. 6A versus Fig. 

6B, respectively) reveals that the distances between cortical patches recreates the barrel-

like perceptual Munsell space, whereas the dissimilarity analyses revealed a spherical 

relationship. This suggests that Munsell color space are appropriate to the study of the 

cortical representation of color perception in V1.

3.7 Color responses of V1 cells are better explained by near uniform color spaces

We statistically determined that V1 cortical color space representations were better 

represented by Munsell than DKL color space by fitting each cell’s response to color 

stimuli to each color space’s characteristic variable, using multiple linear regression. This 

resulted in R2 goodness-of-fit measures of DKL-based versus Munsel-based models, as well 

as additional fits to other color space models as well: CIExyY, CIELUV and CIELAB 

(Fig. 7A and Fig S7). All tested color spaces perform significantly better than DKL color 

space (one-tailed t-test, p < 0.001). This was especially robust for near uniform color spaces 

performs better than CIExyY color space, which follows from the correlations we found 

between cortical distances and neural signal similarities and DeltaE in various color spaces 

(Fig. 6C and 6D). When we performed these same linear regression analyses using only the 

equiluminant color plane, Munsell color space performed as well as DKL color space, and 

indeed was slightly, but significantly, superior to DKL (Fig. S7D).

We further examined the spatial distribution of those cells that are better explained by 

Munsell colors space or DKL color space (Fig.7B, see Materials and Methods). Whereas 

most cells are better explained by Munsell color space (84% and 92.7% in monkey A and 

B), we did find that when cells were better fit to DKL space, they were generally confined to 

cortical regions in which color or orientation tuned fields overlap on the maps (Fig.7.B-D), 

whereas Munsell-preferring cells were largely confined to color-tuned regions.

4 Discussion

The present study reveals a cortical representation of perceptual color space in V1. This 

representation not only includes the basic dimensions of color perception (hue, lightness, 

and chroma), but it also reflects the orthogonal relationships between hue and lightness 

perception. Our results provide the first evidence of a cortical map representing perceptual 

color space at processing stages earlier than the higher brain regions (Bohon et al., 2016; 

Conway, 2009; Liu et al., 2020), and thus our findings enhance our understanding of 
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the chromatic information processing abilities of V1 (Ng et al., 2007). The surprisingly 

perceptual-correspondence of V1 color representations may serve to provide the higher 

cortical areas with the initial organizing principles necessary to achieve even more advanced 

perceptual chromatic analyses, such as the lightness-invariant hue-selectivity found in PIT 

(Sanada et al., 2016). In addition, V1’s contribution to color vision may help to explain how 

color is integrated with other types of visual information in the extrastriate cortex.

Local cortical signals from calcium dyes were previously used to study functional maps in 

NHP V1 (Nauhaus et al., 2012), though SNR was improved in the current study due to 

our lower background calcium signals. Local cortical GCaMP signals have been used to 

study ferret V1 with widefield epifluorescence, though with lower spatial resolution (Smith 

et al., 2015) than our mesoscale two-photon signals. The LoCa signals we employed here at 

micrometer resolution have high SNR, enhancing the quality of functional studies compared 

to previous methods. When used to map functional columns in V1, LoCa signals from a 

single imaging plane have higher utility than cellular imaging volumes (Figs. 2D–F, 3C 

and 4B) in two ways: (i) LoCa signal maps are more fine-grained than cellular maps; and 

(ii) LoCa signal imaging increases experimental efficacy more than 10 times when imaging 

stacks of more than 10 imaging planes. This high SNR also limits adaptation effects (Tailby 

et al., 2008) because stimuli do not need to be presented multiple times for each traditional 

imaging plane.

Chroma tuning has rarely been studied in V1, though a relationship between chroma and 

neuronal response magnitude was found previously in PIT (Conway, 2014). Using LoCa 

imaging, we found that V1 signal strength is also highly correlated to the perception 

of chroma (Fig. 3), in line with the results of a previous 14C-deoxy-d-glucose uptake 

study using color stimuli of different saturation levels (Tootell et al., 1988). We found a 

few neurons in our single-cell results that appeared to be selective for chroma, consistent 

with previous reports (Hanazawa et al., 2000). However, the proportion of cells exhibiting 

apparent chroma selectivity was very small and thus we cannot rule out a spurious 

correlation.

We discovered that V1 responses were more strongly correlated with color perceptual 

models of all three primary axes of color perception—hue, brightness, and chroma—

than with the DKL color model. This suggests that the primary organizing principles of 

perceptual color space are established within V1, and that perceptual color spaces are best 

suited for color studies in V1.

Hue clusters have been reported previously within V1 using ISOI (Xiao et al., 2007). Our 

two-photon imaging data built on these results and revealed that hue representation in V1 

forms pinwheel-like and linear-zone patterns. Hue clusters had a circular organization (Fig. 

2) that followed from Munsell perceptual space color wheels (as well as other similar 

color spaces that have been used to describe human color perception). Complementing 

our high-resolution two-photon imaging, we employed evenly distributed colors from the 

color wheel of human perception, while holding chroma level stable. In previous studies, 

color stimuli were typically based on cone contrast, (Shapley, 2019) color spaces or the 

DKL system (Cottaris and De Valois, 1998), or they employed stimuli at the CRT’s gamut 
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boundary (Garg et al., 2019; Xiao et al., 2007), which limited experimental control of the 

chroma dimension. Our results show that high saturation hues (such as the high chroma 

blues and reds that can be achieved by many CRTs) can produce saturated responses even 

in neurons that prefer other colors. Thus use of maximally saturated chroma levels leads 

to underestimation of the selectivity that a hue patch has with respect to other hues. It 

is therefore more conducive to use mid-level and carefully calibrated chroma levels to 

determine fine structures within hue preference and selectivity measures.

A previous study concluded that lightness level does not affect hue tuning in V1 cells 

(Thorell et al., 1984). Other research has instead found that hue and lightness are jointly 

encoded in V1 (Hass and Horwitz, 2013; Johnson et al., 2001; Lennie et al., 1990; Peng 

and Van Essen, 2005; Yoshioka et al., 1996). However, these prior studies used limited 

numbers of lightness levels and neuronal samples relative to our study. Our results may 

explain the previous discrepancy because we found that the maps for lightness encoding 

and hue encoding interact in orthogonal gradients on the cortex; thus, some hue-selective 

neurons will be unaffected by limited lightness levels whereas others will entangle hue 

with lightness, where the two gradients closely interact and cross. This coding strategy may 

facilitate the eventual appearance of hue-selective lightness invariant cells downstream of 

V1, such as those found in PIT (Conway et al., 2007).

In terms of the spatial relationship between hue and lightness patches, their relative cortical 

distances—together with chroma’s effect on response strength—largely account for the 

three dimensions of perceptual color space enjoyed by old-world primates (Fig. 6A). 

This explanation potentially resolves the long-standing mystery of how a two-dimensional 

cortical map can represent three dimensions of color perception. Indeed, distance-based 

MDS analyses reveal a barrel-like color space in V1 that matches the shape of Munsell 

color space. Our dissimilarity based MDS results also support these conclusions, revealing a 

spherical shape to higher dimensional neuronal representations of color space.

Color and orientation maps are processed in parallel in V1 and share similar organizing 

principles in that they jointly encode multiple dimensions (Garg et al., 2019). Our 

discoveries suggest several new principles underlying the cortical organization of color 

and orientation in V1: (i) Color-selective fields are largely interdigitated with orientation-

selective fields. Whereas orientation-selective fields were often aligned with the ocular 

dominance (OD) borders, color-selective fields tended to be aligned at the centers of 

OD columns. These findings were not reported in previous studies, perhaps because only 

two-photon imaging provides the high SNR and spatial resolution required to identify the 

specific hue-preferences at play on a sub-hypercolumn scale; (ii) The orthogonality of hue 

versus lightness representations in V1 is similar in nature to the orthogonal representations 

found previously between orientation and spatial frequency (Nauhaus et al., 2012); (iii) 

The contiguously spectral nature of perceptual color wheels was recapitulated by our hue 

pinwheels, just as the geometry of different orientations is systematically recapitulated in 

V1 according to the patterns found within orientation pinwheels. These organizing principles 

may contribute eventually to a universal theory of cortical information processing in V1 and 

beyond.
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Although the advantages of two-photon imaging facilitated many of this study’s discoveries, 

limitations remain. For example, the depth of recording with two-photon imaging remains 

constrained, challenging the experimenter’s ability to precisely survey the functional 

structure throughout the cortical layers. The SNR with two-photon imaging is high but 

also remains limited, requiring many repeated presentations (~10) at each cortical location 

to obtain replicable functional results. This limitation prevents the use of the much larger 

stimulus sets that would permit finer grain analyses of the relationship between human 

perceptual color space and the maps in V1.
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Fig. 1. Stimulus set, single-cell calcium signal, and local cortical calcium (LoCa) signals.
(A) The color stimulus set contains 11 achromatic lightness colors (Munsell color N0 to 

N10), 4–7 chroma levels (Chroma = 2 to 14) with a Munsell Value (lightness) of 5 for 

each hue, and 9 lightness levels for each hue (Munsell Chroma = 6). Color stimuli were 

presented as round static disks on CRT. (B) Twelve achromatic drifting gratings were also 

included in the stimuli set. The arrows indicate the directions of the drifting gratings. (C) 

An exemplar two-photon image (average of a time series) from a 25x objective lens. (D) 

Time course of response (mean ± STE from N = 10 trials) from the exemplar cells shown in 

(C) for the most preferred stimulus (red line) versus the least preferred stimulus (blue line). 

(E) Mean responses (± STE, N = 10 trials for each stimulus) as a function of stimuli from 

the cells indicated in (C). Each data point corresponds to a stimulus from (A) or (B). (F) 

Averaged LoCa signals (ΔF/F map) evoked by five hues (Munsell 5R, 5Y, 5G, 5B, or 5P, 

Value = 5, Chroma = 6). (G) Significant pixels in (F) (one-tailed t-test for paired samples, 
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p < 0.01) are shown in gray. Highlighted pixels in bright gray are patches clustered by the 

OPTICS algorithm. Contoured convex-hulls indicate the patches in the following analysis. 

(H-I) LoCa signals are highly effective in revealing cortical locations activated by different 

hues. Dashed contours are copied from (G). The thickness of the colored contours indicates 

the relative signal strength of pixels within that contour.
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Fig. 2. Circular representation of hues in V1.
(A) Mesoscale pixel map of hue preference. Each pixel is rendered by the hue that evoked 

the maximum response (4x objective, N= 50 trials for each stimulus). White lines indicate 

the border of ocular dominance (OD) columns. Pinwheel centers are marked by black 

crosses. The eccentricity of this cortical location was around 4.7°. (B) Mesoscale pixel 

orientation preference map. Pseudo colors denote orientation. Pinwheel centers are marked 

by white crosses. (C) Pinwheel centers for hue versus orientation are presented on a single 

map. (D) Site 1 in (A) was magnified with a 25x objective lens across 7 cortical depths 

(80 – 250 μm). Pinwheel-like patterns were verified by three different analysis modalities 

to determine that analysis artifacts do not explain the results: micro pixel maps, contour 

maps, and cellular maps. The thickness of the colored contours indicates the relative signal 

strength of the pixels within the contour. (E) Exemplar linear-zone-like color fields (Site 2 

from (A)). (F) Response heat maps of hues versus orientations from each cell in (D), sorted 
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by hue, reveal no systematic relationship between color tuning and orientation tuning. (G) 

Pairwise measurements between patches of non-adjacent hues reveal larger cortical distances 

than between spectrally adjacent hues (one-tailed Wilcoxon rank-sum test, p < 0.05 in 8 of 

10 pairs). The notches indicate median ± 1.57 * IQR / sqrt(n), n = 24 – 28. (H) Median 

cortical distances between any pair of hues embedded within 2-dimensional cMDS space. 

Stress = 0.06 and 0.13 for monkeys A and B, respectively. The lines on the circles are error 

bars indicating the distances between patches of two hues (± 1.57 * IQR / sqrt(n)). Data 

derive from a 2 mm x 2 mm cortical area shown in Fig. S2D. (I) Cortical distances between 

hues are highly correlated with ΔE in near-uniform Munsell, as well as CIELUV, CIELAB, 

and CAM2000 perceptual color space in both monkeys. Correlation coefficient bars with p < 

0.05 are in black, otherwise gray.
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Fig. 3. Perceptual lightness is represented in a gradient across cortical locations.
(A) Patches of achromatic lightness form black and white groups when the stimuli are 

shown against a homogenous gray background; at the same cortical location, when stimuli 

were shown against a mosaic background, the patches of different achromatic lightness 

formed linear-zone-like clusters. Centroids of contours on the left panels are shown as disks 

on the right panels. The disk size indicates the relative signal strength of each patch. (B) 

The median cortical distances between achromatic patches ranging in lightness between 

N0 - N10 exhibit similar distributions under either gray or mosaic backgrounds. Data from 

Mk A and B, respectively, n = 15 – 25 clusters. (C) 2D cMDS analysis reveals significant 

differences between the two background conditions employed. Stresses at dimension 2 are 

0.011 and 0.005, respectively. Data come from the cortical area in Fig. S2D. (D) Contours 

indicating different lightnesses of varied hues exhibit systematic displacement on the cortex. 

Contour centroids are shown as disks on the bottom right panel (disk size indicates the 

Li et al. Page 28

Prog Neurobiol. Author manuscript; available in PMC 2022 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative signal strength of each contour). The thickness of the colored contours indicates the 

relative signal strength of pixels within the contour. (E) Traditional cellular response maps 

and pixel maps are consistent with the contour map in (D), indicating that the results are 

not an analysis artifact. The pinwheel center is indicated by a cyan cross. Cells or pixels 

are labeled by their most preferred stimulus (maximum response). (F) The average lightness 

contour distance from lightness Value 9 reveals that lightness maps follow a graded pattern 

(distances between the five different hues are averaged, and do not include the achromatic 

patches). Data are shown as median ± 1.57 * IQR / sqrt(n), n= 53–74 for monkey A, 79 – 

94 for monkey B. The dashed line represents the median displacement of patches activated 

by the same colors (five hues, Munsell Chroma = 6, Value = 5) of different trials. (G) The 

cortical distances between patches of different lightnesses of various hues are positively 

correlated to the perceptual DeltaE between colors described in various color spaces. The 

correlation coefficient is significantly higher in the near-uniform perceptual color spaces 

than in DKL or CIExyY color spaces (n = 36). Correlation coefficients were compared using 

a one-tailed Williams’ t-test for overlapping dependent data, with Bonferroni correction. 

Significance level, *** = 0.001.
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Fig. 4. Chroma is represented in V1 by the strength of neural response.
(A) Cells that have the maximum response at various chroma levels of Munsell hue 5R 

are shown on each map. The same cortical location with Fig. 2D. (B) Response heat maps 

from cells at the same location of Fig. 2D as a function of chroma levels for each of the 

five tested hues. Most of the cells have a maximum response for the highest chroma levels. 

(C) Micro pixel map and contour map for various chroma levels of Munsell hue 5R show 

activation of the same cortical locations with different strengths (same cortical area as (A)). 

(D) Contour map for five hues at different chroma levels (same cortical area as (A)). The 

thickness of the colored contours indicates the relative signal strength of pixels within each 

contour. (E) Contour centroids distances between patches activated by various chroma levels 

to those by the maximum chroma level. At chroma levels > 6, displacements reach baseline 

(dashed line). The dashed line represents the median displacement of patches activated by 

the same colors (five hues, Munsell Chroma = 6, Value = 5) of different trials. (F) Response 

Li et al. Page 30

Prog Neurobiol. Author manuscript; available in PMC 2022 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strength as a function of chroma level (mean ± SEM, n = 3 – 29 patches in monkey A, 22 

– 39 patches in monkey B). (G) Neural response strength was positively correlated with the 

perceptual DeltaE described by various color spaces, especially in near-uniform perceptual 

color space (n = 25). Correlation coefficients were compared by a one-tailed Williams test 

for overlapping dependent data, with Bonferroni correction. Significance level: * = 0.05; ** 

= 0.01; *** = 0.001.
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Fig. 5. Cortical Representations for Hue and Lightness are Orthogonal to Each Other.
(A) Pixel map for hue-lightness preference of a 2 mm x 2 mm area. (B) Smoothed pixel 

map for hue-lightness preference (Gaussian low pass filter, σ = 35 μm). (C) Contour map of 

(B) showing that hue and lightness gradients cross each other orthogonally. Colored curves 

represent hue contours, and achromatic curves represent lightness contours. (D) Histograms 

showing the distribution of the intersection angle between hue and lightness map gradients at 

each crossing point in (C) (regions where SNRs < 3 are not included). Thick lines describe 

the envelope of the histogram. Thin pale lines describe the envelope of histograms produced 

by 1000 times random permutation of color stimuli labels. All the peaks are significant (p < 

0.05).
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Fig. 6. The reconstructed color space by MDS using the cortical distances or neural response.
(A) Classical multiple dimensional scaling (cMDS) analysis of median distances between 

patches for each combination of hue and lightness, including achromatic lightness. The 

cMDS stress of the third dimension is 0.03 and 0.02 for the two monkeys, respectively. 

See Fig. S6A for the Shepard plot of this reconstruction. (B) Dissimilarities between the 

color stimuli in the high dimensional neuronal space were embedded in non-classical MDS 

space. 2127 and 1412 cells from monkeys A and B were used. Stress = 0.01 for both 

monkeys at the third dimension. See Fig. S6B for the Shepard plot of this reconstruction. (C) 

Correlations between the cortical distances of hue-lightness patches and DeltaE in various 

color spaces. (D) Correlations between stimulus dissimilarities in the high dimensional 

neuronal space and DeltaE in various color spaces. Correlation coefficients were compared 

by a one-tailed Williams test for overlapping dependent data, with Bonferroni correction. 

Significance level: *** = 0.001.
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Fig. 7. V1 color cells are better explained by near uniform color space.
(A) Responses of each cell fit by multiple linear regression, using coordinates from Munsell 

versus DKL color spaces. R2 of the fits indicate that Munsell based models describe the 

data significantly better than DKL based models in both monkeys (one-tailed t-test, p < 

0.001). See Fig. S7 for further comparations of DKL based model versus other color spaces. 

(B-C) Exemplar recording sites showing distribution of cells that are best explained by 

Munsell versus DKL axes. LoCa maps of color versus orientation responses (right column) 

for comparison to the cellular data (left column). (D-E) Functional field indices showing 

cellular fits to color versus orientation fields as a function of using Munsell versus DKL 

color spaces. Cells were sampled from 9 imaging planes in monkey A and B respectively. 

The p-values of t-test are shown on the top right corner.

Li et al. Page 34

Prog Neurobiol. Author manuscript; available in PMC 2022 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 35

Ta
b

le
 1

.

C
oo

rd
in

at
es

 o
f 

ch
ro

m
a 

co
lo

r 
st

im
ul

i (
in

 C
IE

_1
93

1 
xy

Y
).

5R
5Y

5G
5B

5P

xy
Y

xy
Y

xy
Y

xy
Y

xy
Y

V
5

C
2

0.
33

91
0.

31
92

20
.8

9
C

2
0.

35
05

0.
36

28
20

.5
3

C
2

0.
29

72
0.

33
93

20
.5

1
C

2
0.

27
93

0.
30

39
20

.5
5

C
2

0.
30

42
0.

29
25

20
.4

1

V
5

C
4

0.
37

39
0.

32
21

20
.6

9
C

4
0.

39
22

0.
40

61
20

.6
8

C
4

0.
28

39
0.

36
25

20
.5

6
C

4
0.

24
96

0.
28

78
20

.5
4

C
4

0.
29

89
0.

26
96

20
.4

7

V
5

C
6

0.
40

80
0.

32
34

20
.9

1
C

6
0.

42
94

0.
44

3
20

.5
4

C
6

0.
26

84
0.

38
44

20
.4

3
C

6
0.

22
11

0.
26

96
20

.4
4

C
6

0.
29

4
0.

24
96

20
.5

9

V
5

C
8

0.
44

17
0.

32
44

20
.8

C
8

0.
45

77
0.

46
83

20
.7

5
C

8
0.

25
1

0.
41

04
20

.7
5

C
8

0.
19

56
0.

25
11

20
.7

1
C

8
0.

28
91

0.
23

03
20

.6
7

V
5

C
10

0.
47

47
0.

32
25

20
.8

2
C

10
0.

28
41

0.
21

33
20

.8
3

V
5

C
12

0.
50

73
0.

31
95

20
.8

9
C

12
0.

28
06

0.
19

66
20

.5
9

V
5

C
14

0.
27

81
0.

18
47

20
.4

1

Prog Neurobiol. Author manuscript; available in PMC 2022 August 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 36

Ta
b

le
 2

.

C
oo

rd
in

at
es

 o
f 

hu
e-

lig
ht

ne
ss

 c
ol

or
 s

tim
ul

i (
in

 C
IE

_1
93

1 
xy

Y
).

5R
5Y

5G
5B

5P
N

xy
Y

xy
Y

xy
Y

xy
Y

xy
Y

xy
Y

V
0

–
–

–
–

–
0.

28
3

0.
32

2
0.

33
2

V
1

C
3.

7
0.

43
5

0.
27

7
1.

25
0

C
1.

8
0.

40
8

0.
41

5
1.

29
0

C
3

0.
26

2
0.

38
7

1.
30

0
C

2.
5

0.
21

2
0.

25
3

1.
27

8
C

5
0.

28
4

0.
17

7
1.

28
9

0.
31

0
0.

31
5

1.
51

0

V
2

C
6

0.
46

5
0.

29
5

3.
32

8
C

3.
5

0.
43

5
0.

44
0

3.
19

0
C

5
0.

24
8

0.
40

5
3.

29
0

C
4

0.
20

5
0.

25
2

3.
30

0
C

6
0.

28
4

0.
20

0
3.

25
0

0.
30

9
0.

31
7

3.
61

0

V
3

C
6

0.
45

9
0.

31
6

7.
00

5
C

5
0.

44
3

0.
45

1
6.

84
0

C
6

0.
24

8
0.

40
9

6.
93

0
C

5
0.

20
1

0.
25

2
6.

83
0

C
6

0.
28

6
0.

21
3

6.
87

5

0.
31

0
0.

31
7

7.
17

0

V
4

C
6

0.
42

9
0.

32
2

12
.6

9
C

6
0.

44
6

0.
45

4
12

.7
1

C
6

0.
25

8
0.

39
9

12
.6

0
C

6
0.

20
7

0.
25

8
12

.7
0

C
6

0.
29

0
0.

23
5

12
.7

8

0.
31

1
0.

31
5

12
.3

8

V
5

C
6

0.
40

9
0.

32
3

21
.1

0
C

6
0.

42
9

0.
44

4
21

.1
1

C
6

0.
26

8
0.

38
5

20
.9

0
C

6
0.

22
1

0.
27

0
21

.1
0

C
6

0.
29

4
0.

25
0

20
.5

9

0.
31

0
0.

31
6

20
.9

0

V
6

C
6

0.
39

4
0.

32
3

32
.0

0
C

6
0.

41
5

0.
43

1
31

.6
0

C
6

0.
27

3
0.

37
8

31
.9

0
C

6
0.

23
2

0.
27

9
31

.9
0

C
6

0.
29

6
0.

25
9

31
.2

5

0.
31

0
0.

31
6

31
.5

3

V
7

C
6

0.
38

1
0.

32
6

45
.3

7
C

6
0.

40
3

0.
42

1
45

.9
0

C
6

0.
28

0
0.

37
2

45
.7

0
C

6
0.

24
0

0.
28

5
46

.0
1

C
6

0.
29

7
0.

26
7

45
.0

1

0.
31

0
0.

31
6

45
.4

0

V
8

C
6

0.
37

4
0.

32
5

62
.9

8
C

6
0.

39
2

0.
41

3
62

.3
0

C
6

0.
28

2
0.

37
0

62
.2

0
C

6
0.

24
5

0.
28

9
62

.5
0

C
6

0.
29

7
0.

27
0

61
.6

0.
31

1
0.

31
6

62
.6

1

V
9

C
3.

5
0.

34
3

0.
32

1
81

.1
0

C
6

0.
38

5
0.

40
7

82
.3

0
C

6
0.

28
3

0.
36

9
82

.0
5

C
4

0.
26

7
0.

30
0

82
.2

3
C

4
0.

30
0

0.
28

7
82

.7
6

0.
31

1
0.

31
6

83
.6

0

V
10

–
–

–
–

–
0.

31
0

0.
31

7
10

6.
8

Prog Neurobiol. Author manuscript; available in PMC 2022 August 21.


	Abstract
	Introduction
	Materials and methods
	Experimental Design
	Visual Stimuli
	Calibration of CRT chromaticity in CIE coordinates
	Munsell color space parameters
	Calculation of stimulus color coordinates and DeltaE in other color spaces
	Two-photon imaging
	Overall image analysis paradigm
	Image data pre-processing
	Signal to noise ratio
	Functional mapping analyses
	Cell extraction and screening
	Pixel map creation
	Identification of clustered patterns with connected component labelling
	Grouping of hue, lightness, chroma, or achromatic patches
	Cortical distances between centroids of patches
	Classical multidimensional scaling (cMDS) of cortical distance
	Multidimensional scaling (MDS) of stimulus dissimilarity in neuronal space
	Hue-lightness contour maps and their orthogonality
	Multiple linear regression analysis of cellular color responses
	Statistical Analysis

	Results
	Visual stimuli and recording procedures
	Pinwheels and linear zones of hue-selectivity in V1
	The map of Munsell lightness in V1
	Chroma is represented by the strength of the neural response
	Cortical Representations of Hue and Lightness are Orthogonal to Each Other
	The overall representation of perceptual color space in V1
	Color responses of V1 cells are better explained by near uniform color spaces

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table 1.
	Table 2.

